

	

HL7	for	Busy
Professionals

	
Your	No	Sweat	Guide	to	Understanding	HL7

	
Rahul	Bhagat

Illustration	By	Calvin	Hui
	

Anchiove
2015

Table	of	Contents
		Preface

Part	I
Scratching	the	surface

	
	1.	Introduction
	2.	What	is	HL7?
	3.	Integration	Concepts
	4.	Evolution	of	HL7
	

Part	II
Digging	Deeper

	
	5.	Basic	Concepts
	6.	Message	Building	Blocks
	7.	Working	with	a	Message
	8.	Control	Segments
	9.	Data	Segments
10.	Other	Important	Topics

Preface
After	university,	I	got	a	job	with	a	busy,	Toronto	based,	healthcare
consulting	company.	On	day	two	at	work,	I	was	handed	a	printout	with
cryptic	text	on	it,	and	a	document	called	interface	spec,	to	read	and
understand.

This	was	my	introduction	to	HL7.	At	that	time,	I	did	not	realize	that	this
obscure	messaging	protocol	would	become	my	ticket	to	far	off	places,	and
the	reason	to	meet	and	work	with	a	lot	of	people.

It	didn't	take	me	long	to	learn	HL7,	my	programming	background
helped.	Later,	I	realized	that	my	skill	is	in	high	demand	and	I	became	a
consultant.	I	traveled	to	different	cities	and	worked	on	various	HL7	projects.

I	also	started	running	into	people	from	non-technical	background	who
wanted	me	to	explain	HL7	in	the	elevator	or	while	chatting	in	their	cubicle.
There	wasn’t	any	introductory	book	I	could	suggest,	so	the	idea	of	writing
one	myself.

I'm	glad	I	collaborated	with	Calvin	Hui	in	writing	this	book.	He	not	only
took	care	of	illustration	and	design	but	also	nudged	me	when	I	was	slacking
after	the	first	draft.	My	friend	Erik	Westermann	was	a	great	sounding	board
and	helped	me	refine	my	ideas.	And	thanks	to	many	colleagues	who	helped
me	develop	my	skills.	In	particular,	Derrick	Leung,	who	mentored	me	when
I	was	just	starting	out.

So	here	it	is.	My	idea	of	an	introductory	book	on	HL7.	I	hope	you	enjoy
reading	it.

Part	I
Scratching	the	surface

1.	Introduction
A	technical	book	usually	implies	a	dry	subject.	So	its	no	surprise	authors
have	a	hard	time	figuring	out	ways	to	make	the	book	interesting	to	the
reader.	HL7	is	one	such	subject.	It	is	a	subject	that	is	so	high	on	the	scale	of
dryness	and	no	one	comes	to	it	willingly.	The	only	reason	someone	would
read	a	book	on	HL7	is	because	of	his	or	her	job.	And	if	you	are	here,	reading
this	book,	then	I	assume	you	work	in	healthcare	IT	or	intend	to	join	the
industry	soon.

I	have	made	every	effort	to	take	out	the	dryness	of	the	subject	and	make
this	book	interesting.	There	are	no	needless	jargons	or	esoteric	concepts
thrown	casually	to	trip	you.	In	fact,	you	will	see	a	heavy	reliance	on
everyday	examples	and	inclusion	of	background	information	to	paint	a
complete	picture.	But	HL7	and	healthcare	system	integration	are	complex
subjects	so	there	will	be	topics	that	don't	make	sense	right	away.	Please
persevere.	Tie	a	knot	and	hang	in	there.	Gradually	things	will	make	sense.

This	introductory	book	on	HL7	goes	in	detail	to	explain	what	HL7	is.	It
gives	you	the	basic	concepts,	tells	you	about	the	organization	behind	it	and
helps	you	create	a	mental	map	of	the	voluminous	HL7	specification
document.	And,	it	takes	you	through	a	whirlwind	tour	of	some	of	the	most
commonly	used	HL7	messages,	all	in	a	short	span	of	time.

Early	Railroads
HL7	was	created	to	solve	the	problems	of	clinical	system	integration.	But	to
truly	understand	the	problems	of	system	integration,	let’s	start	with	another
integration	problem	we	solved	centuries	ago.

The	1800’s	were	a	time	when	railways	were	coming	of	age	in	America	–
just	like	battery	driven	cars,	drones	and	other	new	technologies	are	coming
of	age	today.

There	were	literally	hundreds	of	companies	competing	for	a	piece	of	the
railway	pie.	Enterprising	companies	would	buy	up	land,	lay	down	tracks	and
run	a	transport	service	between	cities	which	had	no	other	means	of
transportation	except	for	horse-drawn	wagons	or,	if	one	was	fortunate,
steamships.

By	the	time	American	civil	war	started	(1861),	vast	stretches	of	the
continent	were	already	connected	through	rail	and	work	was	well	underway
on	the	construction	of	the	transcontinental	railroad	to	connect	California	with
the	rest	of	the	country.

However,	there	was	one	problem.	You	could	not	just	hop	on	a	train	and
get	off	at	your	destination,	like	you	can	today.	Because	these	railroads	were
built	and	run	by	different	companies,	they	used	different	track	gauges
(horizontal	distance	between	two	rails	of	the	track).	This	meant	you	had	to
get	off	and	change	trains	whenever	you	hit	a	junction	with	two	different
gauge	widths.	There	were	well	over	twenty	different	track	gauges	being	used
at	the	time	of	the	civil	war.	The	army	had	to	constantly	load	and	unload
cargo	in	its	effort	to	get	supplies	to	the	troops.	This	was	a	serious	problem!

And	it	was	the	reason	that	finally	made	the	American	government	to
push	for	the	conversion	of	all	railway	tracks	to	a	standard	gauge—4	feet	and
8.5	inches,	the	most	commonly	used	gauge	width.	More	than	half	of	the
existing	tracks	were	built	to	this	width	so	it	was	easiest	to	convert	the
remaining	tracks	to	this	width	and	achieve	standardization.

Standardization	of	rail	tracks	was	the	first	step	towards	creating	an
integrated	system	where	goods	and	people	could	move	freely	across	the
whole	network.	It	was	followed	by	the	development	of	a	common	signal
system,	time	zones,	harmonized	train	schedule,	fixed	coach	height,	a
standard	coal	and	water	supply	system	and	on	and	on.

It	was	evident	that	an	integrated	system	needed	a	standard	way	of	doing
things.

Evolution	of	Healthcare	IT	Systems
Today,	we	are	in	a	(somewhat)	similar	situation	with	the	movement	of
healthcare	information.	It	cannot	seamlessly	flow	from	one	system	to	the
next.	Each	organization	has	its	own	way	of	storing	and	sharing	information.
Whenever	health	information	needs	to	move	across	organization	boundaries,
it	hits	the	incompatible	standards	roadblock.	Someone	has	to	unload	and
reload	the	information.

Healthcare	IT	systems	have	evolved	similar	to	railroads.	Initially,
hardware	costs	(think	multi-million	dollar	mainframes)	were	the	biggest
factor,	so	only	a	few	teaching	hospitals	with	deep	pockets	had	the	means	to
build	a	system.	These	were	primarily	stand-alone	systems	meant	to	serve	a
specific	purpose.	For	example,	to	manage	patient	population	in	a	large
hospital.

Then	the	hardware	cost	came	down	and	minicomputers	arrived	on	the
scene.	A	computer	could	be	had	for	less	than	$25,000	and	didn’t	need	a

room	to	house	it.	This	allowed	smaller	players	and	even	departments	within
a	hospital	to	purchase	systems	of	their	own.	Pharmacies	installed	systems	to
track	prescriptions	and	dispensed	medication	while	laboratories	set	up
systems	to	track	requests	for	tests	and	their	results.

This	led	to	dramatic	improvement	in	productivity	for	these	organizations
but	there	was	no	free	flow	of	information	between	the	clinical	systems.	The
problem	was	lack	of	standardization.	Information	from	one	system	had	to	be
unloaded	to	paper	and	transported	to	where	the	other	system	was.	Then	a
human	operator	would	reload	the	information	to	the	other	system	by
manually	typing	it	in.

Of	course	this	was	the	worse	case	scenario.	Improvements	were	made.
Information	was	loaded	on	floppy	disks	and	electronically	moved	to	the
other	system.	Still,	there	was	no	free	flow	of	information	between	systems.
This	prevented	us	from	realizing	the	true	potential	of	electronic	systems.

Then	some	IT	vendors	came	up	with	a	solution.	Replace	stand-alone
systems	with	an	integrated	product	-	an	EHR	(electronic	health	record).	If
you	are	familiar	with	Cerner,	Epic	or	Meditech	then	you	know	what	I	am
talking	about.	A	large	system	with	modules	for	every	department.

This	eliminated	the	need	for	health	information	to	cross	system
boundaries.	Within	the	system,	the	modules	would	use	a	standard	way	of
storing	and	sharing	information	and	this	would	allow	the	information	to	flow
seamlessly	within	the	organization.

This	approach	worked	well.	EHRs	have	been	very	successful	in
eliminating	the	problem	of	integrating	systems	within	an	organization	and
they	continue	to	be	one	of	the	cornerstones	of	the	healthcare	IT	structure.

But	what	about	sharing	information	outside	the	organization?
Healthcare	organizations	don’t	work	in	isolation.	They	need	to	share
information	with	insurance	companies	and	send	patient	care	information	to
the	government.	They	have	to	constantly	communicate	with	the	outside
world.

To	use	our	railway	analogy,	this	was	similar	to	the	situation	where	each
state	could	set	its	own	standard	gauge.	You	could	travel	all	over	a	state
without	the	need	to	switch	trains	but	when	you	wanted	to	cross	the	state
boundary,	you	would	need	to	disembark	and	get	on	a	train	that	ran	on	the
other	state’s	standard	gauge.

Clearly,	EHRs	were	only	a	limited	solution.
There	was	also	the	question	of	what	to	do	with	existing	standalone

clinical	systems.	These	systems	were	built	over	many	years	through
substantial	monetary	investment.	An	organization	would	be	loath	to	scrap	all
that	investment	&	hard	work	and	replace	it	with	an	EHR.

Healthcare	needed	a	better	solution.	It	needed	a	standard	gauge	to

connect	these	EHRs,	standalone	systems,	external	systems	and	systems	that
were	yet	to	be	built.	It	needed	to	move	away	from	constantly	loading	and
unloading	information.
	

The	solution	was	HL7.

2.	What	is	HL7?
HL7	is	an	ANSI	accredited,	OSI	level	7,	application	layer	protocol	for
exchanging	clinical	and	administrative	data	between	healthcare	systems.

Chances	are,	if	you	are	not	a	network	engineer	or	did	not	study
computer	science,	then	“OSI	level	7,	application	layer	protocol”	probably
means	nothing	to	you.

In	lay	terms,	you	can	say	that	HL7	is	a	language	that	clinical	systems
use	to	exchange	information	with	each	other.	But	even	that	doesn’t	tell	you
anything.	When	I	was	learning	HL7,	the	definition	raised	its	own	questions
and	left	me	with	a	vague	sense	of	unease.	It	took	a	fair	bit	of	research	to
figure	out	what	HL7	is.

So	instead	of	leaving	with	a	sense	of	unease,	why	don’t	we	take	the	time
and	figure	out	what	HL7	really	is?

Application	Layer	Protocol
HL7	is	an	application	layer	protocol.	This	means	that	it	defines	the	rules	for
exchanging	data	(clinical	and	administrative)	between	applications.

We	often	use	the	word	system	and	application	in	an	informal	way,
which	clouds	the	distinction	between	the	two.	Historically	an	application
was	the	same	as	a	system.	An	old	accounting	system,	with	its	hardware	and
printers	and	monitors	had	only	one	job	or	application–	preparing	and
maintaining	financial	records.

Things	changed	when	systems	became	more	powerful	and	started	taking
on	multiple	roles.	A	great	example	is	your	smartphone.	It’s	not	just	a	phone
anymore.	Making	a	phone	call	is	just	one	of	the	many	functions	of	the
device.	It	has	numerous	“apps”	or	applications	for	all	sorts	of	things.

Similarly,	modern	computer	systems	or	servers	run	multiple
applications,	including	clinical	applications.	When	applications
communicate	with	each	other,	they	have	to	do	so	through	their	system.
Basically,	applications	create	a	message	in	a	language	that	is	understood	by
their	counterpart	applications	–	in	our	case	HL7	–	and	hand	it	over	to	their
system	for	delivery.	The	system	doesn’t	understand	the	message.	Its	job	is	to
reliably	deliver	the	message	to	the	destination	system.

HL7	is	one	such	specialized	application-to-application
language/messaging	rule	book/protocol	–	whatever	you	call	it	–	for
communication	between	clinical	applications.

OSI	Level	7
HL7	is	also	an	OSI	(Open	System	Interconnection)	Level	7	protocol.	This	is
just	a	formal	way	of	saying	that	it	is	an	application	layer	protocol.

Now,	we	are	going	to	discuss	OSI	and	its	levels	and	that	means
splashing	through	packet	based,	network	communication.	If	you	are	not
interested	in	it,	I	would	suggest	skipping	over	to	the	next	chapter.

OSI	is	a	reference	model	that	networking	guys	use	to	make	sense	of	the
network	communication	model	and	how	things	really	happen	at	the	bit	and
byte	level.

It	is	not	difficult	to	understand	the	OSI	model.	The	secret	is	proper
background	knowledge	and	an	understanding	of	the	key	concepts.	Let’s	see
if	we	can	do	that	in	a	few	short	pages	here.

Historical	Background
Using	electricity	for	communication	started	with	Samuel	Morse,	the	inventor
of	the	telegraph.	He	created	a	simple	circuit	with	a	battery,	a	bowl	of
mercury	and	two	long	wires	grounded	at	ends.

If	he	dipped	a	wire	in	the	bowl	of	mercury,	it	completed	the	circuit	and
current	flowed	through	it.	To	send	a	short	burst	of	electricity,	he	would	dip
the	wire	and	pull	it	out	quickly.	This	was	like	sending	electric	“smoke	puffs”
to	the	other	end.

This	basic	idea	was	refined	into	the	telegraph	and	Morse	code.	The	code
had	two	letters	–	a	dot	and	a	dash.	A	dot	was	a	short	puff	of	electricity	and	a
dash	was	a	longer	puff	(about	3	times	the	duration	of	a	dot).	Dots	and	dashes
were	combined	to	represent	letters	and	voila!	We	had	electronic
communication.

	
	

.	This	is	a	preview.	Rest	of	the	Chapter	is	not	shown

	

4.	Evolution	of	HL7
We	live	in	a	world	of	standards.	As	new	technologies	emerge,	a	necessary
condition	for	their	wide	adoption	is	standardization.	We	notice	it	when	there
is	a	problem	with	the	standard.	As	must	be	evident	to	anyone	in	a	foreign
country	not	able	to	plug	in	a	laptop	because	the	power	outlet	is	different.

Standards	emerge	from	different	sources.	A	standard	could	be	imposed
by	the	government,	as	was	the	case	with	the	conversion	from	the	imperial	to
the	metric	system	of	measurement.		Both	the	USA	and	Canada	started	the
conversion	but	in	the	States,	the	government	defunded	the	Metric	Board,
stalling	their	conversion.	In	Canada	however,	the	conversion	was	completed
and	we	started	measuring	distance	in	kilometers	and	temperature	in	Celsius.

Another	source	of	standard	is	the	industry	itself.	Companies	at	the
forefront	of	a	new	technology	vie	for	competitive	advantage	by	promoting
adoption	of	their	technology.	We	have	all	heard	about	the	famous	videotape
standards	battle	between	Betamax	and	VHS.	Sony’s	Betamax	was	a	superior
technology	but	VHS	became	the	standard	because	JVC	was	relentless	in
promoting	it	to	electronics	manufacturers.

A	third	source	of	standard	is	market	forces,	which	leads	to	a	de-facto
standard.	This	was	the	case	with	TCP/IP.	It	became	the	dominant,	and
ultimately	standard,	network-communication	protocol	as	a	result	of	gradual
adoption	by	universities	and	businesses.	By	the	time	the	ISO	model	was
developed,	it	was	too	late	for	a	switchover.	TCP/IP	was	already	baked	in.

And	finally,	there	is	the	deliberate	approach	where	experts	get	together
with	the	specific	intent	of	creating	a	standard.	This	is	how	the	HL7	standard
came	into	being.

	
.	This	is	a	preview.	Rest	of	the	Chapter	is	not	shown

	

PART	II
Digging	Deeper

	

6.	Message	Building	Blocks
To	the	uninitiated,	the	sight	of	an	HL7	message	is	often	intimidating.	A	brew
of	symbols	and	characters,	it	looks	like	something	out	of	the	Matrix	that	is
beyond	the	comprehension	of	mere	mortals.	But	to	be	honest,	HL7	really	is
quiet	simple	and	straightforward,	once	you	know	how	to	read	it.	And	for
that,	you	will	need	to	learn	about	the	building	blocks	of	an	HL7	message.

Let’s	take	the	example	of	registering	a	new	patient.	When	the	staff	at	the
front	desk	completes	the	patient	registration	and	hits	enter,	it	triggers	an
event:	A04	(Register	patient).	This	causes	the	system	to	generate	a	new
ADT^A04	HL7	message,	which	looks	something	like	this.
MSH|^~\&|SENDER_APP|SENT_BY|RECEIVER_APP|RCVD_BY|201310201500||ADT^A04|MSG_ID001|P|2.5|||AL

EVN|A04|201310201500|||ID221^Dude@Terminal

PID|1||PAT416^^^HEALTH_ID||SEBELUS^KANSAS||194801150600|M|||123SESAME.ST^^TORONTO^ON^A1A2B2^CANADA||
(416)888-8088||ENGLISH	|M||PAT_AC_721914

NK1|1|SEBELUS^MARY|SPOUSE|||(416)888-9999|(647)123-1234|C|20131020

PV1|1|O|ROOM10^BED12^OUTPATIENT|ELECTIVE|||S21195^DRIKOFF^FRANCIS^^^DR^MD||C90023^PAYNE^TRACY^^^DR^MD|SUR||||1|||S21195^DRIKOFF^FRANCIS^^^DR^MD||37323|SELF||||||||||||||||||||||||201310201500

PV2|||DAY	SURGERY

AL1|1|FA^PEANUT||PRODUCES	MILD	RASH

See	what	I	mean?	Makes	no	sense.	But	soon	it	will.

Segment
The	primary	building	block	of	a	message	is	a	segment.	A	segment	is	simply
a	row	of	data	in	the	message.	So,	for	the	message	above,	the	first	segment
starts	with	MSH	and	ends	on	line	two	with	AL.	It	is	actually	just	one	row	of
data,	which	was	wrapped	over	to	the	second	line.	There	is	a	line	break	after
AL	and	that	means	end	of	the	segment.	The	second	segment	starts	with	EVN
on	line	three	and	ends	at	“Terminal”	on	the	same	line,	followed	by	a	line
break	and	so	on.	A	new	segment	always	starts	on	a	new	line.

The	first	three	characters	of	each	segment	is	the	segment	ID.	The
segment	ID	is	an	acronym	or	the	nametag	of	the	segment.

Once	we	know	the	segment	name,	we	know	the	information	in	that

segment.	This	is	because	the	main	purpose	of	a	segment	is	to	group	related
information	together.

In	our	example	here,	there	are	seven	segments	(IDs	bolded).	MSH	is	the
Message	Header	segment,	EVN	is	the	Event	segment,	PID	is	the	Patient
Identification	segment	and	so	on.	Without	even	looking	at	the	content	of	the
PID	segment,	I	can	tell	you	it	contains	the	name	of	the	patient,	his	health	ID,
date	of	birth,	phone	number,	address	-	basically	all	the	information	that	can
be	used	to	identify	the	patient.	Hence	the	name	of	the	segment	-	Patient
Identification.
MSH|^~\&|SENDER_APP|SENT_BY|RECEIVER_APP|RCVD_BY|201310201500||ADT^A04|MSG_ID001|P|2.5|||AL

EVN|A04|201310201500|||ID221^Dude@Terminal

PID|1||PAT416^^^HEALTH_ID||SEBELUS^KANSAS||194801150600|M|||123SESAME.ST^^TORONTO^ON^A1A2B2^CANADA||
(416)888-8088||ENGLISH	|M||PAT_AC_721914

NK1|1|SEBELUS^MARY|SPOUSE|||(416)888-9999|(647)123-1234|C|20131020

PV1|1|O|ROOM10^BED12^OUTPATIENT|ELECTIVE|||S21195^DRIKOFF^FRANCIS^^^DR^MD||C90023^PAYNE^TRACY^^^DR^MD|SUR||||1|||
S21195^DRIKOFF^FRANCIS^^^DR^MD||37323|SELF||||||||||||||||||||||||201310201500

PV2|||DAY	SURGERY

AL1|1|FA^PEANUT||PRODUCES	MILD	RASH

Message	Structure
Segments	in	a	message	are	always	organized	in	a	specific	order.	This	order
is	called	the	message	structure.	Different	message	types	have	different
message	structures	but	some	things	are	always	the	same.	For	example,	every
message	starts	with	an	MSH	segment.

If	the	order	of	segments	in	a	message	is	not	exactly	like	its	message
structure,	then	that	message	will	become	invalid.	It	will	be	rejected	by	the
receiving	system.

You	can	get	the	abstract	message	structure	of	any	message	in	the	HL7
specification	document.	The	abstract	message	structure	of	an	ADT^A04
message	is	in	Chapter	3	of	the	HL7	specification	document	where	event	A04
is	discussed.

Here	is	a	partial	abstract	message	structure	of	an	ADT^A04	message.	It
is	just	a	table	with	three	columns:	segment	ID,	segment	name	and	the	chapter
where	that	segment	is	explained.

If	you	compare	the	example	message	to	its	abstract	message	structure,
the	segment	order	does	not	match	between	the	two.	In	the	example	message,
the	SFT	segment	is	missing	after	MSH;	PD1	&	ROL	are	missing	too.

Does	that	mean	the	example	message	is	invalid?	No,	it’s	not	because	the
[]	and	{}	brackets	around	those	segments	make	them	either	optional	or
repeatable.

	
Optional	/	Repeatable	/	Mandatory
There	are	two	kinds	of	brackets:	square	[]	and	curly	{}.	If	a	segment	ID	is
enclosed	within	[square	brackets],	it	means	the	segment	is	optional.	We	can
choose	whether	to	include	that	segment	in	the	message	or	not.	These
segments	are	generally	for	optional	information,	such	as	PD1	(additional
patient	information).

If	the	segment	ID	is	enclosed	within	{curly	brackets},	then	that	segment
is	repeatable.	We	can	have	more	than	one	instance	of	that	segment	in	a	real
message.	Curly	brackets	are	for	segments	like	NK1	(Next	of	Kin).	If	a
patient	has	given	contact	information	for	two	next	of	kin	(spouse	and	sister),
then	the	information	for	each	next	of	kin	will	need	a	separate	NK1	segment
in	the	message.

If	a	segment	ID	is	enclosed	in	both	[{square	and	curly}]	brackets	then
that	means	the	segment	is	both	optional	and	repeatable.	If	a	segment	ID	is
not	surrounded	by	any	bracket	then	that	means	it	is	a	mandatory	segment.
That	segment	has	to	be	present	in	the	message.	So	segments	like	MSH,
EVN,	PID,	PV1,	with	no	brackets,	have	to	be	present	in	a	real	message.

Based	on	this	knowledge	we	can	see	why	the	example	is	a	valid
message.	All	the	missing	segments,	SFT,	PD1	and	ROL	are	surrounded	by
square	brackets.	And	that	means	those	segments	are	optional.	We	can	choose
to	leave	them	out.

	
	

.	This	is	a	preview.	Rest	of	the	Chapter	is	not	shown

	

8.	Control	Segments
From	the	last	chapter,	if	you	remember	the	discussion	about	the	anatomy	of
a	message,	control	segments	are	the	segments	in	the	head	of	a	message.	They
only	carry	meta-data	information	about	a	message.

There	are	about	a	dozen	control	segments	defined	by	HL7.	They	are	all
explained	in	chapter	2	of	the	HL7	spec.	Fortunately,	we	only	need	to	know
about	a	few	of	them	to	account	for	the	vast	majority	of	cases.	For	example,
there	are	control	segments	for	breaking	a	very	large	message	into	smaller
pieces	and	control	segments	for	batching	together	a	large	number	of
messages.	These	control	segments	are	not	used	that	frequently	and	for	a
general	understanding,	you	can	skip	them.

There	are	five	control	segments	that	you	really	should	know	about	–
MSH,	EVN,	NTE,	MSA	&	ERR.	We	will	start	with	MSH,	the	ubiquitous
control	segment	that	every	message	begins	with.	It	is	the	most	important
control	segment.	If	you	decide	five	is	too	many	for	your	precious	time	and
you	are	only	going	to	read	about	one,	then	let	this	be	the	one.

	

Message	Header	Segment	(MSH)
The	message	header	segment	(MSH)	is	the	most	important	control	segment.
Every	HL7	message	starts	with	this	segment.	When	an	HL7	message	is
received	by	a	system,	it	is	the	MSH	that	tells	the	receiving	system	where	this
message	came	from,	the	information	it	contains	and	how	it	is	supposed	to	be
acknowledged.

This	is	a	segment	you	want	to	know	well.
To	get	a	better	understanding	of	the	contents	of	this	segment,	let’s	use

the	MSH	segment	from	our	example	A04	message	and	explore	its	contents.
MSH|^~\&|SENDER_APP|SENT_BY|RECEIVER_APP|RCVD_BY|201310201500||ADT^A04|MSG_ID001|P|2.5|||AL

If	you	break	the	segment	down	into	its	separate	fields,	it	gets	easier	to
figure	out	the	content.	Remember	|	is	used	to	separate	fields.

	
MSH-1:		|		(Field	Separator)

MSH-2:		^~\&		(Encoding	Characters)
MSH-3:		SENDER_APP		(Sending	Application)

MSH-4:		SENT_BY		(Sending	Facility)

MSH-5:		RECEIVER_APP		(Receiving	Application)

MSH-6:		RCVD_BY		(Receiving	Facility)

MSH-7:		201310201500		(Date/Time	of	Message)

MSH-8:

MSH-9:		ADT^A04		(Message	Type)

MSH-10:		MSG_ID001		(Message	Control	ID)

MSH-11:		P		(Processing	ID)

MSH-12:		2.5		(Version	ID)

MSH-13:

MSH-14:

MSH-15:		AL		(Accept	Acknowledgement	Type)

Note	that	some	of	the	fields	are	empty	(e.g.	MSH-8).	This	is	perfectly
fine.	Remember,	not	every	field	in	a	segment	is	required	to	have	a	value.	If
you	refer	to	the	segment	attribute	table	of	MSH,	you	can	confirm	that	all
missing	fields	are	optional.

Now,	here	is	a	little	insider	information.	There	are	only	a	few	fields	in
each	segment	that	are	really	important	and	regularly	used.	That	is	why	you
see	the	usual	pipe	pattern	(||||)	in	HL7	messages.	The	consecutive	pipes	are
nothing	but	empty	fields.

So	keeping	with	our	tradition,	and	saving	you	precious	time,	we	are
going	to	discuss	only	the	most	important	fields	in	a	segment.

In	the	MSH	segment,	owing	to	the	fact	that	it	contains	most	of	the	meta-
data	information,	there	are	many	important	fields.	It	is	the	heaviest	control
segment.	Some	of	these	important	fields	are	required	and	others	are	optional,
but	they	almost	always	have	a	value.

If	you	refer	to	the	segment	attribute	table	of	the	MSH	segment,	HL7
requires	that	the	following	fields	always	have	a	value.
MSH-1:				Field	Separator

MSH-2:				Encoding	Characters

MSH-7:				Date/Time	Of	Message

MSH-9:				Message	Type

MSH-10:		Message	Control	ID

MSH-11:			Processing	ID

MSH-12:			Version	ID

It	is	easy	to	find	out	which	fields	are	required	in	a	segment.	Just	go	to
the	segment	attribute	table	and	look	for	the	letter	R	in	the	optionality	(OPT)
column.

Besides	these	required	fields,	there	are	some	other	fields	(below)	in
MSH,	which	are	optional	but	regularly	used.	They	are	important	and	I	think
you	should	know	about	them.
MSH-3:				Sending	Application

MSH-4:				Sending	Facility

MSH-5:				Receiving	Application

MSH-6:				Receiving	Facility

MSH-15:		Accept	Acknowledgement	Type

MSH-16:		Application	Acknowledgement	Type

Keep	in	mind	though	that	this	is	only	my	personal	opinion.	Others	can
argue	that	there	are	other	optional	fields	that	are	important	and	some	here	are
not.	I’m	not	denying	it.	But	from	my	experience,	I	believe	these	are	the
important	fields	in	the	MSH	segment.

Now	let’s	get	familiar	with	these	fields	because	the	name	of	the	field
doesn’t	tell	you	even	one	tenth	of	the	story.

	
MSH-1:		Field	Separator
Usually,	the	first	field	in	a	segment	is	the	field	that	follows	the	segment	ID.
So	technically	“encoding	characters”	should	be	the	first	field	of	MSH
segment.	But	with	MSH,	there	is	an	anomaly.	The	first	field	(MSH-1)
always	defines	the	symbol	that	will	be	the	field	separator	(delimiter)	for	the
entire	message.	If	you	remember	the	discussion	about	pipe	delimiters	in
Chapter	6,	|	is	the	field	separator	in	HL7	messages	and	therefore,	the	first
field	of	MSH.	But	it	doesn’t	have	to	be.	You	can	choose	to	have	a	comma	(,)
or	any	other	symbol	as	the	separator.	If	you	choose	to	use	a	comma,	the
segment	will	look	something	like	this.
MSH,^~\&,SENDER_APP,SENT_BY,RECEIVER_APP,RCVD_BY,201310201500,,ADT^A04,MSG_ID001,P,2.5,,,AL

This	would	be	a	perfectly	legitimate	HL7	segment.	However,	|	has
become	such	a	de	facto	standard	that	no	one	really	uses	anything	but	|	as	the
field	delimiter.	But	it’s	good	to	know	that	we	have	the	power	to	change	it.

	
MSH-2:		Encoding	Characters
Encoding	Characters	are	the	four	symbols	^	~	\	&	that	HL7	reserves	for
message	construction.

These	characters	have	special	meaning,	which	allows	applications
reading	an	HL7	message	to	distinguish	between	components	and
subcomponents	of	a	field,	read	repeating	fields,	and	translate	symbols.

The	encoding	characters,	in	order,	are	-	Component	Separator	(^),
Repetition	Separator	(~),	Escape	Character	(\)	and	Sub	Component	Separator
(&).	The	position	of	each	character	is	fixed	in	the	field.	First	the	component
separator	then	the	repetition	separator	and	so	on.

By	having	these	symbols	in	MSH-2,	we	are	basically	saying	that	in	this
HL7	message,	^	will	be	used	to	separate	components,	~	will	be	used	to
separate	multiple	occurrences	of	a	field,	\	will	be	used	for	special	characters
and	&	will	be	used	to	separate	sub	components.

But	shouldn’t	this	be	hardcoded	in	systems	that	read	HL7	messages,
instead	of	including	it	in	every	message?

Good	point.	The	reason	encoding	characters	are	included	in	every	HL7
message	is	because	these	characters	are	customizable	too,	just	like	the	field
separator	|.

HL7	gives	you	the	option	of	selecting	your	own	encoding	characters.	If
you	don’t	like	^	and	would	rather	have	#	as	the	component	separator	in	your
messages	then	all	you	have	to	do	is	replace	^	with	#	in	MSH-2.	As	a	result,
your	encoding	characters	would	be	#~\&.	The	#	symbol	will	now	be	the
component	separator.

But	this	whole	discussion	is	pointless!	Over	the	years,	these	symbols
have	become	a	de	facto	standard.	I’ll	bet,	many	folks	who	have	been
working	with	HL7	for	years,	don’t	know	that	you	can	change	these	symbols.
I	have	never	come	across	a	message	where	a	different	set	of	symbols	were
used.

Before	we	move	to	the	next	field,	you	need	to	know	more	about	the
other	two	encoding	characters	–	the	Repetition	Separator	(~)	and	the	Escape
Character	(\).

Repetition	Separator	(~):	This	is	the	symbol	that	separates	multiple
values	in	a	field.	Remember	the	section	on	segment	attribute	table	in	chapter
7?	Some	fields	are	repeatable	and	they	can	have	multiple	values.	~	is	the
symbol	that	is	used	to	separate	those	values	in	a	field.

In	the	MSH	segment,	field	MSH-18	and	field	MSH-21	are	repeatable.
This	means,	whenever	those	fields	have	two	or	more	values,	the	values	will
be	separated	by	the	~	symbol.	If	a	system	reading	the	message	comes	across
the	~	symbol,	it	will	know	right	away	that	what	follows	is	the	next	value	of
the	field.

Escape	Character	(\):	HL7	reserves	encoding	characters	for	message
construction	and	they	have	a	special	meaning	in	the	message.	What	happens
if	you	need	to	use	one	of	those	special	characters	as	part	of	the	data?	The

application	reading	the	message	is	going	to	be	all	confused!!
In	real	world	applications,	the	most	troublesome	of	these	special

characters	is	the	ampersand	symbol	(&).	It	is	used	for	“and”	(as	in	Ben	&
Jerry’s)	and	is	also	a	commonly	used	symbol	in	programming	languages	like
HTML	(which	could	be	embedded	in	an	HL7	message).	So,	sooner	or	later,
you	are	bound	to	come	across	the	&	symbol	in	the	body	of	an	HL7	message.

What	happens	if	these	characters	are	part	of	the	data?	Let’s	consider	an
example.

Ben	&	Jerry’s	Diagnostic	Center	sends	the	result	of	a	test	as	an	HL7
message	to	the	ordering	hospital.	The	hospital	system	receives	the	message
and	starts	reading	it	to	parse	the	data	(pull	out	field	values)	and	save	it	to	a
database.	When	the	system	gets	to	the	Sending	Facility	field	(MSH-4),	it	will
read	“Ben”	and	then	run	into	the	&	symbol.	At	that	point,	the	system	is	being
told	that	the	name	of	the	facility	has	a	sub-component.	Facility	names	don’t
have	sub-components	(if	you	check	the	segment	attribute	table),	so	in	all
likelihood	the	system	doesn’t	have	a	corresponding	field	in	the	database	to
save	the	value	“Jerry’s	Diagnostic	Center”.

This	is	a	recipe	for	application	failure.	Let’s	assume	this	is	a	futuristic,
can-handle-anything	kind	of	system,	but	even	then	the	system	is	only	saving
“Ben”	as	the	name	of	the	sending	facility,	which	is	incorrect.	The	doctor
reading	the	lab	report	will	see	that	“Ben”	sent	the	test	result.	I	don’t	know
how	much	faith	she	will	have	in	the	report.

So	what	do	we	do?	We	can’t	ask	Ben	&	Jerry’s	Diagnostic	Center	to
change	its	name.

This	is	where	the	escape	character	comes	to	the	rescue.	If	characters,
which	have	special	meaning	in	HL7,	need	to	be	transmitted	as	part	of	the
data,	then	all	one	needs	to	do	is	replace	the	character	with	its	corresponding
escape	sequence.	The	system	reading	it	will	read	the	escape	sequence	and
replace	it	with	that	special	character	before	saving	it.

An	escape	sequence	is	nothing	more	than	one	or	more	characters
surrounded	by	the	escape	character	(\).	Every	special	character	in	HL7	has	a
corresponding	escape	sequence.	There	are	many	escape	sequences	for
formatting	and	highlighting	text,	and	you	can	even	create	custom	escape
sequences.

Here	are	the	escape	sequences	for	the	symbols	we	have	already
discussed:

Guess	how	Ben	&	Jerry’s	Diagnostic	Center	will	be	encoded	in	an	HL7
message.		You	will	replace	the	encoding	character	&	with	its	corresponding
escape	sequence	so	that	you	will	have	“Ben	\T\	Jerry’s	Diagnostic	Center”
encoded	in	the	message.	The	receiving	system	will	recognize	\T\	as	an
escape	sequence	and	replace	it	with	the	&	symbol	when	the	data	is	saved
locally.

	
	

.	This	is	a	preview.	Rest	of	the	Chapter	is	not	shown

	

	Preface
	Part I
	1. Introduction
	2. What is HL7?
	4. Evolution of HL7
	Part II
	6. Message Building Blocks
	8. Control Segments

